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Abstract
To improve satellit e transponders' bandwidth
utili zation, trelli s-coded modulations using an "industry
standard" 64-state, rate 1/2 convolutional code on M-
ary PSK constellations have be proposed and patented.
We provide implementation details: simpler branch
metric computations for a DSP-based 8-PSK trelli s
decoder and a phase ambiguity resolution method using
the R-S outer code.

1 Introduction
Intelsat has adopted a new standard [1], which employs
trelli s coded modulation (TCM), using 8-PSK, with
mandatory Reed-Solomon (R-S) (219, 201) outer
coding over GF(28). This standard has twice the
bandwidth eff iciency (at almost 2 bps/ Hz) than the
IESS-308 standard it replaces (at almost 1 bps/Hz). It
states: "Since 8-PSK TCM uses practically the same
satellit e power1 and is twice as bandwidth eff icient, its
usage will permit more eff icient use of orbital
spectrum". This standard, reviewed in section 2,  does
not use the optimum 64-state Ungerboeck TCM [2] for
the chosen 8-PSK modulation. Rather, a "pragmatic"
TCM (PTCM) scheme, based on the methodology of
[3] and two patents [4,5] was chosen. The use of
PTCM is justified in [3] as follows:
                                                          
1 At channel capacity, a bandwidth constrained channel
with data rate to bandwidth ratio, r, requires a
minimum Eb/N0=(2r-1)/r; thus, minimum Eb/N0s are
0dB and 1.76dB at 1 bps/Hz  and 2bps/Hz respectively.
While there is no Eb/N0 difference between uncoded
BPSK (1bps/Hz) and uncoded QPSK (2bps/Hz) at any
BER, the Eb/N0 difference between rate 1/2 coded
QPSK (1bps/Hz) and rate 2/3 PTCM using 8-PSK (2
bps/Hz) at a BER of 10-5 is -2dB.

1) There exists a widely used "industry standard"
constraint-length 7 (64-state), rate 1/2 convolutional
code that is optimum for BPSK and QPSK.
2) While the use of this convolutional code in PTCM
results in a 2dB clear sky2 loss relative to the
optimum 64-state, rate 2/3 Ungerboeck TCM at
extremely low BERs, there is only a 0.4dB loss at a
BER of 10-5. The mandatory R-S outer code further
reduces this BER to an acceptable level.

One patent [4] title reflects the chief benefit of PTCM
for 8-PSK: reduction of the traceback memory and
computation complexity3 (per decoded bit) associated
with the PTCM decoder relative to a decoder for the
optimum 64-state Ungerboeck TCM decoder. It also
describes a metric setting method, reviewed in section
3, that requires a conversion from in-phase and
quadrature data to phase (this requires a divide, a table
look-up and other four-quadrant logic to be provided
external to the "industry-standard" Viterbi decoder).
Section 4 describes a simple metric setting procedure,
suitable for DSP software implementation, yielding the
desired performance using only multiplies and
saturation logic.

The second patent [5] describes the phase ambiguity
resolution circuit required if the PTCM scheme is used
by itself (i.e., without Reed-Solomon outer coding).
The use of this circuit effects the branch metric
computation at low to moderate Eb/N0. The
multiplication of errors caused by the ambiguity
resolution circuit may be minimized by erasing (setting
to 0)  some branch metrics when the received signal is
close to intermediate significant bit (ISB) transitions.
                                                          
2 For clear sky, the satellite channel exhibits negligible
ISI; rain may induce some fading..
3 This TCM decoder's computational complexity per
decoded bit is almost half as that of the 64-state rate 1/2
coded QPSK.



In section 5, two proposals for PTCM schemes at 2.5
bps/Hz4 using 8-PSK are reviewed. The performance of
simple branch metric computations for the more
promising scheme is provided. In section 6, a
procedure that uses the R-S outer code to resolve phase
ambiguity is described.

2 Background
Figure 1 shows the PTCM phase ambiguity resolving
encoder proposed in [4,5].
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Figure 1. Phase Ambiguity Encoder for rate 2/3
PTCM using 8-PSK

The 8-ary symbol (bits ENCC[2:0]) is mapped to the 8-
PSK constellation as shown in Figure 2.
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Figure 2. Symbol mapping to 8-PSK constellation

A block diagram of the PTCM decoder is depicted in
Figure 3. We are principally concerned with a

                                                          
4 [3] describes a PTCM at 3 bps/Hz using 16-PSK;
schemes using higher-order modulations must be
carefully evaluated with respect to their sensitivity to
phase error and spectral regrowth (when non-linearly
ampli fied). 2.67 bps/Hz PTCMs using 8-PSK (with 1
dB Eb/N0 penalty when compared to PTCMs at 2.5
bps/Hz) using punctured codes (derived from the
standard rate 1/2 code) are also described by [7] and
[8].

description and simpli fication of the first module of
Figure 3: the computation of the branch metrics to the
Viterbi Decoder.
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Figure 3. PTCM Decoder block diagram

We first consider the BER without the effect of error
multiplication by the phase ambiguity resolution
decoder. It is usual to compare the performance of a
rate (N-1)/N PTCM scheme using M=2N signals with
the performance of an equivalent bandwidth uncoded
system using M/2 signals. For uncoded operation, the
BER, Pbu is bounded by5 [3]:
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while the coded BER, Pbc, with an M-signal
constellation is lower bounded by:
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where K≤1. For rate 2/3 PTCM using 8-PSK, using a
standard 64-state convolutional code, this reduces to:
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(3) may be understood as follows: the minimum
distance path is only one branch long, because of the
two parallel transitions from a state, X, at stage n to
stage n+1 (Figure 4). The single branch error
probabilit y is merely the BPSK bit error probabilit y,
with energy doubled since two bits are sent per symbol,
and multiplied by a factor of 0.5 because only one out
of two input bits is involved in such single branch
decision errors. This is a lower bound because errors
from multi -branch paths must also be considered. At
higher Eb/N0,  for the standard 64-state code, the multi -
branch errors may be neglected (in comparison to
single branch errors) [3].
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Figure 4. Trellis for 8-PSK pragmatic TCM

To achieve this performance, the branch metrics must
be set according to the Euclidean distance between
received signal with respect to the 4 closest transmitted
points in the signal constellation.

3 Branch metric
Computation
For gray-coded QPSK used in IESS-308, with the
constellation points being ejkπ/2, k=0,1,3 and 2, four
(soft decision) branch metrics computed from the
incoming in-phase and quadrature matched filter
outputs, I and Q, are simply I, Q, -I and -Q
corresponding to symbols 00, 01, 11 and 10. These
matched filter values, when negated, may be thought of
as relative squared Euclidean distances6.

For IESS-310, without loss of generality, we consider
received matched filter pair as shown in Figure 5 and
the squared Euclidean distances between received
signal with respect to the 4 closest transmitted points in
the 8-PSK constellation. The squared distances with
respect to constellation points on a radius R circle are:
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R (which, assuming no fading, is constant) may be
estimated by an automatic gain control circuit (AGC).

                                                          
6 These values may be negative, and therefore, are not
true "distances"; however, only relative distances
matter to the Viterbi decoder.
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Figure 5. Branch metrics calculated using Euclidean
distances to four nearest neighbors.

If the effects of varying P (=I2+Q2+R2) are ignored, the
branch metrics may be taken to be the last terms in the
right hand side of (4), the correlations of the received
signal with the closest 4 transmitted signals. In order to
avoid determining which 4 signals (of the 8) are closest
to the received signal, absolute values of the
correlations of the received signal with only those
vectors depicted in Figure 4 may be used. The 4
correlations may be computed using 2 adds, 2
multiplies by a constant, 4 comparisons, and, in the
worst case, 4 negations.

There are two diff iculties with directly using the
correlations computed above in a Viterbi decoder:

a) When P>>2R2 or P<<2R2 (due to noise), so are
the correlations (the relative distances), and these
are given undue weight in a finite horizon Viterbi
decoder
b) ISB decoding (ISB hard decision boundaries are
shown in dashed lines in Figure 2) errors cause
error multiplication in the phase ambiguity
resolution circuit7.

To resolve the first diff iculty, the correlations have
upper and lower limits applied to them. To resolve the
second diff iculty, erasures (0s) take the place of
correlations with respect to the farthest 2 (of the 4
closest) transmit signals when the received signal is
close to these ISB decision boundaries.

                                                          
7 There are two sources of error multiplication: the first
due to binary differential decoding and the second due
to incorrect demultiplexor selection caused by ISB
errors. The explanation of (3) provided in section 2
shows that error multiplication due to ISB errors is of
significance only at low to moderate Eb/N0.



In current practice, the I and Q samples are first
converted to an angle (using a division and a 4-
quadrant arctangent table look-up) and then the 4
metrics are set according to a table (for example, this
procedure is followed in Qualcomm's PTCM decoder).
Note that these metrics have two periods in (0,2π] (due
to taking absolute values of correlations).

4 Efficient Branch metric
Computation
Motivated by the periodicity of the correlations
described above, more efficient metric calculations are:
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These surrogate squared distances8 may be computed
using 3 multiplies9. These are then limited
symmetrically with respect to 0 (this involves an
additional 8 comparisons and, in the worst case, 4
substitutions). The limit value can be so chosen that the
relative distances are, for all practical purposes, the
same as the relative distances in (4) after limiting.  For
simplicity, modification of metrics for received signals
close to ISB transitions are omitted10.

The performance of this metric setting procedure, using
11-bit quantized11 I and Q values, a traceback memory
of 38 states and empirically optimized metric
saturations, shown in Figure 6, approaches the
theoretical lower bound at high Eb/N0 and is
comparable to a commercially available PTCM
decoder. Details of the Viterbi decoder used for this
implementation are provided in [6].

                                                          
8 Approximate distances are adequate at all Eb/N0's
where single branch errors dominate (where (3)
applies).
9 Each multiply is typically a single cycle operation on
modern DSPs.
10 This refinement may be introduced with a small
additional complexity, but the gain at moderate to high
SNRs is insignificant.
11 11-bit quantization is used for proper sector
decoding; 6 bit quantized I and Q values are adequate
for the Viterbi decoder.
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Figure 6. Rate 2/3, 8-PSK PTCM performance
using the simplified branch metric computation
(solid line) compared to uncoded QPSK (dashed

line). The bound of (3) is the dotted line.

5 PTCM at 2.5 bps/Hz using
8-PSK
A rate 5/6 code for 8-PSK using a "industry-standard"
rate 1/2, 64-state convolutional encoder punctured to
rate 3/4 is described in [7] as shown in Figure 7. The
normalized square Euclidean distance for this code is
1.465 (the punctured code has a free Hamming distance
of 5). Thus, though this PTCM provides 2.5 bps/Hz as
compared to 2 bps/Hz for uncoded QPSK, it still
provides an asymptotic coding gain (ACG) of 1.66dB.
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Figure 7. Rate 5/6 PTCM using a punctured
"industry-standard" rate 1/2 code. The odd and

even sets of tribits are mapped as in Figure 2.

A phase ambiguity resolution circuit based on the
similar ideas as shown in Figure 2 may be used.
However, in [8] it is pointed out that, when mandatory
R-S outer coding is used, it may be used to resolve
phase ambiguity. This avoids error multiplication due
the phase ambiguity resolution circuit. The PTCM
scheme used in [8] does not use a punctured 64-state
code; instead, the pair of bits produced by the



convolutional code are time interleaved on odd and
even bauds as shown in Figure 8.

 c 0 
c 1 
c 2 

c 3 
c 4 

b even 

b odd 

Rate 
1/2 encoder 

Figure 8. Rate 5/6 PTCM using an unpunctured
rate 1/2 code. The odd and even sets of tribits are
mapped to the constellation in lexicographic order

(rather than the gray coded order of Figure 2).

For this rate 5/6 PTCM using 8-PSK, using a 64-state
convolutional code, the BER at high SNRs is:
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(6) may be understood as follows: the minimum
distance path is only one branch long, because of the
two parallel transitions from a state, X, at stage n to
stage n+1 (Figure 4). The single branch error
probabilit y is merely the QPSK bit error probabilit y,
with energy multiplied by 1.25 since 2.5 bits are sent
per symbol as compared to 2 bits in QPSK, and
multiplied by a factor of 0.8 because four out of five
input bits are involved in such single branch decision
errors. At higher Eb/N0, for the 64-state code, the multi -
branch errors may be neglected (in comparison to
single branch errors). Thus, the ACG is
10log10(1.25)=0.97dB which is worse than TCM
obtained using a rate 1/2 code punctured to rate 3/4 by
0.69dB.

However, [8] states that ACG is not the sole criterion
used in selecting a TCM scheme; rather the coding gain
at the operating range of BERs should be considered12.
As the BER of the scheme in [7] is ultimately limited
by the rate 3/4 punctured code13, it exhibits a sharper
"knee" than the scheme of [8]. Thus, in a range of
BERs (typically between 10-3 and 10-5 where R-S outer
coding further reduces BERs to make them acceptable)

                                                          
12 This is essentially the same argument made in [3] in
comparing its rate 2/3 PTCM scheme for 8-PSK with
that used by the optimum Ungerboeck code.
13 Since the rate 3/4 code's decoder requires twice the
traceback memory of the unpunctured rate 1/2 decoder,
[8] has this additional, but unclaimed, advantage (that
[4]'s title gives importance to) over [7]. The results
shown in Figure 9 were obtained using a Viterbi
decoder with a traceback memory of 38 states.

[8]'s scheme performs better than [7]. The performance
of the scheme of [8] is shown in Figure 9.
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Figure 9. Rate 5/6, 8-PSK PTCM performance
(solid line) compared to uncoded QPSK (dashed

line). (6) is shown as a dotted line. The circles show
the performance with a (225,205) Reed-Solomon

outer code over GF(28).

6 Phase ambiguity resolution
using R-S outer code
As suggested in [8], phase ambiguity (as well as symbol
pair sychronization in the PTCM of Figure 8) may be
resolved using the R-S outer codes with periodically
inserted unique words (UWs) (avoiding error
multiplication in phase ambiguity resolution circuits).
For example, [1] prescribed mandatory R-S (219, 201)
outer coding over GF(28) with periodically inserted
unique words, but curiously includes a testing
requirement as follows:

"Due to the steepness of the BER versus Eb/N0

response curve when using the Reed-Solomon outer
coding, an inordinately long period of time is
necessary to detect a suff icient number of errors to
determine the BER performance with a reasonable
degree of confidence at even moderate Eb/N0 values.
Assuming that Reed-Solomon outer codec is
functioning, determining the BER performance of the
TCM codec without Reed-Solomon outer coding,
would enable users to quickly determine whether or
not the modem is functioning correctly".

Evidently, any scheme that uses the R-S
synchronization pattern to resolve phase ambiguities
cannot cater to testing without R-S outer coding.
Furthermore, the scheme of [8] avoids the
multiplication of errors caused by the ambiguity



resolution circuit described in [5]. As seen in section 4,
setting of branch metrics in the scheme of [3] due to an
ambiguity resolution circuit is also made more
complex. However, the absence of a phase ambiguity
resolution circuit may allow the inner code, for some
repetitive data patterns, to indicate node
synchronization, but the outer code to fail to
synchronize14. The following procedure (assume that
inner and concatenated codes are not synchronized and
timer=0 initially) ensures synchronization with all data
patterns:

if (inner code synchronized)
     if (outer code errors in s-bit UW< r)
          concatenated code is synchronized
     else {
          set inner code is not synchronized;
         increment inner code phase reference by 2π/M (mod 2π);
         if (phase==0) change symbol pair alignment;
     }
else
     if (timer++==timeout) {
         timer=0;
         increment inner code phase reference by 2π/M (mod 2π)
        if (phase==0) change symbol pair alignment;
    }

The inner code usually correlates the re-encoded
decoded sequence and the (suitably delayed) hard-
decision decoded received symbols in order to
determine phase synchronization. The expected outer
code synchronization time using this method,
calculated using the methods described in [9], is not
significantly different than the outer code
synchronization time when the inner code incorporates
a phase ambiguity resolution circuit such as [5].

7 Conclusion
The performance of a simpli fied metric setting
procedure for 2 and 2.5 bps/ Hz PTCM decoder,
suitable for DSP implementation,15 is described and
shown to be comparable to that provided by a
commercially available PTCM decoder chip. We also
extend this procedure to one 2.5 bps/Hz PTCM
proposal. A method for phase ambiguity resolution

                                                          
14 For example, with an all zeroes pattern interrupted
occasionally by unique words (for R-S
synchronization), the inner code may declare node
synchronization and yet produce an (incorrect) output
pattern that prevents outer code synchronization.
15 A TMS320C5402 implementation of the scheme of
[3], including phase ambiguity resolution,  can support
data rates exceeding 1Mbps, while consuming 780 16-
bit words of data memory and 1533 words of 16-bit
program memory.

and/or symbol set alignment using the R-S outer code
unique words, that is data pattern insensitive, is also
described. In summary, the trade-off criteria used in
selecting a TCM scheme are:

• Eb/N0 at operating BER versus decoder
memory/ complexity

• Performance loss associated with phase
ambiguity resolution methods versus
synchronization time

• bps/Hz versus sensitivity to phase error/
spectral regrowth
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