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MULTIMEDIA DATA CHARACTERISTICS

• CONSISTS OF CONTROL INFORMATION AND TRANSFORM COEFFICIENTS
 

 

• RUN-LENGTH CODING IS USED
 

 

• ERRORS IN CONTROL INFORMATION (USUALLY RUN-LENGTH ENCODED)
CAUSES LOSS OF SYNCHRONIZATION AT BEST AND GOBBLEDYGOOK AT
WORST

 

 

• ERRORS IN TRANSFORM COEFFICIENTS ARE EASILY CONCEALED (IF
ERASURE INFORMATION INDICATES WHICH COEFFICIENTS ARE LIKELY
TO BE IN ERROR)

 

 

• CONTROL INFORMATION IS REDUNDANTLY CODED ON A FRAME-TO-
FRAME BASIS SO THAT QUICK SYNCHRONIZATION/ START-UP MAY BE
ACHIEVED
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PROBLEM OF MULTIMEDIA DATA TRANSMISSION (UNEQUAL
ERROR PROTECTION)

PARTITION A MULTI-USER CHANNEL WITH PER-USER CAPACITY, C, INTO
TWO SUB-CHANNELS, SC1 AND SC2, OF CAPACITY C1 AND C2 SUCH THAT:

• C1+C2≈C and C1∼C2

 

• BER (SC1) <  BER (SC2)
 

• LATENCY (SC1) < LATENCY (SC2)
 

• DECODING COMPLEXITY(SC1)≈DECODING COMPLEXITY (SC2)

IS THIS POSSIBLE?

APPLICATION: WIRELESS MP3 WALKMANS ACCESSING I-RADIO SITES



signion 4

OUTLINE

• REVIEW ORTHOGONAL CONVOLUTIONAL CODES (OCCs) ON THE PULSE-
POSITION CHANNEL (Z-CHANNEL)

 

• INTRODUCE CODED QPSK WAVEFORMS FOR THE PULSE-POSITION
CHANNEL AND DESCRIBE DETECTOR

 

• SHOW THAT THIS CHANNEL CAPACITY IS TWICE Z CHANNEL'S CAPACITY
 

• DECOMPOSE CHANNEL INTO PULSE-POSITION SUB-CHANNEL (PPSC) AND
CODE SUB-CHANNEL (CSC)

 

• SHOW THAT BER PERFORMANCE OF PPSC IS BETTER THAN Z CHANNEL
BY FACTOR OF 6 FOR SAME CODE COMPLEXITY

 

• SHOW THAT BER PERFORMANCE OF CSC IS A FACTOR OF 10 WORSE THAN
PPSC FOR SAME BIT-RATE AND CODE COMPLEXITY (CSC LATENCY IS
TWICE PPSC) AND ERASURE INFORMATION CAN BE SUPPLIED TO
MULTIMEDIA DECODER

 

• OTHER ISSUES
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Z-CHANNEL AND OCC PULSE POSITION MODULATION
(VITERBI AND COHEN 1971)
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PERFORMANCE OF PPM SCHEME

• FOR m-USERS, CAPACITY PER USER IS ln(2)/m (AN EXCELLENT 69.3%
EFFICIENCY AS COMPARED TO IDEAL TDM)

 

• BER PERFORMANCE:

PB
dT D N

dN

P PK

PN D D1
0 5 0 5

1 0
2

0

1 2 0
2

1 0

< = ⋅
−

−= =

.
( , )

.
( )

( ),

where

[ ]P D pn
m
n K m n

0 0
11 1 2= = = − − − −( )

K=constraint length

m=number of users



signion 7

MULTIPLEXED NOISE CODES (GOLAY, WELTI, TURYN)

• MNCs ARE SUITABLE FOR ALL VARIANTS OF QPSK
 

• FORMED BY ORTHOGONALLY MULTIPLEXING CODE PAIRS
 

• THE APERIODIC AUTOCORRELATION φab(τ) OF THE PAIR (a, b) IS THE SUM
OF THE INDIVIDUAL AUTOCORRELATIONS φa(τ) AND φa(τ)

 

• THEY HAVE A SINGLE-VALUED APERIODIC AUTOCORRELATION, I.E.,

φa(τ) = -φb(τ) , ∀ τ ≠ 0
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CROSS-CORRELATIONS BETWEEN MNC PAIRS

AT LAG τ, k-LENGTH SEQUENCES a, b HAVE APERIODIC CROSS-
CORRELATION:

 φ τ τ
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FOR any PAIR (i,j) TO BE ORTHOGONAL TO (m,n) AT ALL LAGS, THE
APERIODIC CROSS-CORRELATIONS SATISFY:

φim(τ) = -φjn(τ) , ∀ τ

THIS CONDITION CAN BE MET IFF (m,n)= (~, ~)j i− ; FOR ANY k, EXACTLY TWO
MNC PAIRS SATISFY THIS

2k LENGTH MNC PAIRS CAN BE OBTAINED FROM k LENGTH MNC PAIRS BY
THE GOLAY CONSTRUCTION:

If (a,b) IS MNC, THEN ( , )ab ab IS ALSO MNC (ab IS THE CONCATENATION OF a AND b).
b IS THE COMPLEMENT OF b. THUS FIND 2 MNC PAIRS ∀ 2s, s=2,3,….
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WHY USE ORTHOGONAL MNC PAIRS FOR MULTIPLE ACCESS?

• 0 AUTOCORRELATION (τ≠0) AND 0 CROSS-CORRELATION WITH THE
OTHER MNC PAIR (CARRIER SENSE DOESN'T IMPROVE PERFORMANCE;
HOWEVER, RANDOMIZE USERS' TRANSMISSION TIMES).

 

• THE Z-CHANNEL SUITS HIGH PEAK-TO-AVERAGE RADIOS; MNCs REDUCE
PEAKING REQUIREMENTS.

 

• INCREASED SIGNAL DURATION DOESN'T REDUCE # SLOTS (MNCs MAY
OVERLAP BEYOND A SLOT WITH NO INTERFERENCE). FOR Z CHANNEL,
P(QUIET)=P(z)=0.5; FOR k-SYMBOL MNC SIGNALING, P(QUIET)=P(z)k.

 

• ANOTHER OCCUPANCY MEASURE, THE RATIO OF THE STANDARD
DEVIATION TO THE MEAN OF SLOT ENERGY, IS k-0.5 (I.E., TEMPORAL
OCCUPANCY INCREASES BY A FACTOR of 4 for 16 SYMBOL MNC's).

 

• CW INTERFERENCE DEGRADES PPM DECODING FOR THE Z CHANNEL;
DOESN'T LIMIT MNC-BASED PPM SYSTEM (THE CROSS-CORRELATION AT 0
LAG IS 0 WHEN  CW PHASE IS lπ/2, l∈{0,1,2,3} W.R.T. BAUD).
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COHERENT DETECTOR FOR MNC SIGNALING

 ×

 ×

LPF

LPF

 LO

90°

x(t)

xi(t)

xq(t)

x z di i

t

t kT

( ) ( )τ τ τ1

+

∫

x z dq i

t

t kT

( ) ( )τ τ τ2

+

∫

  + Comparator

x z di q
t

t kT

( ) ( )τ τ τ1

+

∫

x z dq q

t

t kT

( ) ( )τ τ τ2

+

∫

  + Comparator

t

t

|⋅|

|⋅|



signion 11

 CHANNEL MODEL

• m-USER MULTIPLE ACCESS SYSTEM, EACH USER DATA RATE R, OPERATING
BANDWIDTH W, INDEPENDENT TRANSMISSION BY SELECTING TRANSMISSION SLOT
AND BETWEEN TWO MNC PAIRS

 

• IDENTICAL DUTY CYCLE USERS WITH q BEING PROBABILITY THAT A USER DOES NOT
TRANSMIT AT A GIVEN SLOT

 

• CONSIDER ONLY OTHER-USER INTERFERENCE; IGNORE NOISE, MULTIPATH:
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CHANNEL CAPACITY

THE CAPACITY, C, OF A K-INPUT, J-OUTPUT, DISCRETE MEMORYLESS
CHANNEL, WITH TRANSITION PROBABILITIES P(j|k), 0≤j≤J-1, 0≤k≤K-1 AND
INPUT PROBABILITY ASSIGNMENTS Q=[Q(0), …,Q(K-1)],  IS:
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FOR m>>1, OPTIMUM q IS NEARLY 1. FOR Q(z)=q=1-k/m, THE TRANSITION
PROBABILITIES ARE qm-1~e-k, r~e-k/2, s∼e-k/2-e-k, 1-2s-qm-1~(1-r)2 :
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CAPACITY IS REDUCED BY ONLY ln2~0.695 RELATIVE TO TDMA USING QPSK
AND IS TWICE THAT OF THE Z CHANNEL.

STEADY-STATE PROBABILITIES AT CAPACITY ARE P(z)=0.5, P(0)=P(1)=(√2-
1)/2, AND ERASURE PROBABILITY IS 2P(0)2.
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PULSE-POSITION OCC (PPSC) AND CODE SUB-
CHANNEL (CSC)
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COMPUTATION OF VITERBI DECODER METRICS
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State transition diagram

THE OPTIMUM STRATEGY FAVORS PATH WITH ERASURES AS COMPARED TO
PULSES RECEIVED WITHOUT ERASURES:

OBSERVE THOSE n POSITIONS FOR THE KNOWN n PULSE (FOR EACH SHIFT
REGISTER VALUE, jxi). SET THE BRANCH METRIC Rjxi TO # POSITIONS WHERE
PULSE AREN'T RECEIVED+ε⋅#MNC's RECEIVED WITHOUT ERASURES (0<ε<1/h;
h IS DECODING HORIZON IN INFORMATION BITS).
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PERFORMANCE OF PPSC (1)

qk : PROBABILITY THAT INCORRECT TIED PATH DIFFERED FROM CORRECT
PATH IN k BRANCHES HAS MORE ERASURES THAN CORRECT PATH

pk =qkpm
k : PROBABILITY THAT INCORRECT PATH IS SELECTED
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: ERASURE PROB. | AN UNDESIRED PULSE

# ERASURES IN k-LENGTH CORRECT (Na) AND INCORRECT (Nb) PATHS ARE
BINOMIAL ; WHEN k>>1, APPROXIMATE BY NORMAL DISTRIBUTIONS:
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PERFORMANCE OF PPSC (2)

DISTRIBUTION OF Nb-Na IS N[k(pb-pa), k{pa(1- pa)+ pb(1- pb)}]. THE ERRONEOUS
PATH IS SELECTED WHEN Nb-Na >0 AND WITH PROBABILITY 0.5 WHEN Nb-
Na=0 AND THIS PROBABILITY, qk:
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COMPARISON OF UPPER BOUND AND SIMULATED
PERFORMANCE WITH Z CHANNEL
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Comparison of n=2, K=7 PPSC  performance with (lower traces) and without (upper
traces) erasure processing. The inequality used in approximating qk results in a tight
upper bound at low bandwidth expansions.
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CHANNEL CODING FOR CSC

nK-LENGTH ERROR/ ERASURE BURST (AT ERRONEOUSLY PPSC DECODED

POSITIONS)  AND RANDOM ERASURES AT RATES PB1 AND pa OCCUR ON THE
CSC. HARD DECISION DECODING BER IS:

P nKP p pHD CSC B a a( ) ). ( .= + ≈0 5 0 5
1

THIS ERROR-RATE IS UNACCEPTABLE (e.g., 0.195 for K=7, m=128).

ASSUMING CONVOLUTIONAL CODING, IF CSC  PPSC ARE TO HAVE SAME
ERROR EXPONENTS, THE CSC's CODE REQUIRES A MUCH HIGHER
(IMPRACTICAL) CONSTRAINT LENGTH THAN THE PPSC.
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PERFORMANCE OF CSC VITERBI DECODER

• FOR ERASURE CHANNELS, ONLY TIES CAUSE ERRORS
 

• USE MAJORITY-LOGIC TIE RESOLUTION.
 

• AN ERASURE OUTPUT ACCOMPANIES EACH VITERBI DECODED BIT

TIES REMAIN UNRESOLVED (i.e., OUTPUT ERASURE) FOR MULTIPLE
WINNING PATHS and WHEN CARDINALITY OF WINNING PATH SUBSETS
YIELDING 0 AND 1 ARE EQUAL. AN UPPER BOUND OF THE CSC's BER, FOR A
FAR DECODING HORIZON, IS THE PRODUCT OF FORWARD AND BACKWARD
WINNER TIE PROBABILITIES:
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SIMULATED ERROR AND ERASURE RATES OF CSC
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CSC error (upper trace) and erasure (lower trace) rates with KCSC=7, n=2, r=0.5
convolutional code.
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THMA CODE DESIGN

 

• IF USER DATA IS SIMILAR (FOR EXAMPLE, IN AUDIO COMPRESSION,
QUANTIZATION INDICES, SCALE FACTOR, ETC. DURING QUIET PERIODS),
THEN FHMA (e.g., REED-SOLOMON, NO) CODES MAY BE USED FOR THMA
TO INCREASE MULTIPLE-ACCESS PERFORMANCE

 

 

• EVEN IF USER DATA IS RANDOM, THERE IS NO HARM IN USING FHMA
CODES

 

 

• THMA CODE GENERATOR IS STEPPED  n TIMES PER USER SYMBOL
INTERVAL
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CODE ACQUISITION

• HIGHLY STABLE TOD STANDARDS AND FIXED TIME INDEXING ASSUMED
 

• CODE ACQUISITION VIA PPSC VITERBI NODE SYNCHRONIZATION
 

• EACH NUMBERING IN PPM IS A COSET OF THE  THMA CODE
 

• EACH OF L COSETS EXAMINED TWICE, ONCE PER 1/2 TIME STEP
 

• L IS DETERMINED BY MAX. CLOCK UNCERTAINTY AND PROP. DELAY
 

• IF GUARD TIME=Lτ, L/(n2K+L) IS THE OVERHEAD -TO-PAYLOAD RATIO
 

• L  LIMITS MAX. USER BIT RATE TO (1+nr)⋅(Lτ)-1 bps, (τ : CHIP DURATION)
 

• TRANSMITTER BIT TIMING IS TRACKED USING AN EARLY-LATE GATE ON
THE REGENERATED CODE FROM THE OUTPUT OF THE CSC VITERBI
DECODER AND A DELAYED VERSION OF THE RECEIVED SIGNAL
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PHASE AMBIGUITY RESOLUTION

• CARRIER PHASE AMBIGUITY OF π IS RESOLVED BY TAKING THE
ABSOLUTE CORRELATOR OUTPUT PRIOR TO THRESHOLDING (FIGURE 2)

 

• FOR ±π/2, MNC (i,j) BECOMES (-j,i) AND (j,-i)
 

• WHEN THE RECEIVED SIGNAL (-j, i) IS CORRELATES WITH (~, ~)j i− , THUS
CAUSING A 1 TO BECOME 0 AND VICE VERSA

 

• DIFFERENTIAL ENCODING ON CSC CHANNEL REQUIRED
 

• PREAMBLE AIDS QUICKER NODE SYNCHRONIZATION
 

• CODE PHASE DWELL TIME ∼ TIME TAKEN BY PPSC VITERBI DECODER TO
DECLARE NODE SYNC. (IF PRESENT)
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EFFECT OF DESTRUCTIVE INTERFERENCE

MODEL AS DELETION-PROBABILITY ON INTERFERENCE
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PPSC (upper trace) and CSC (lower trace)  error rates (without differential
decoding) for KPPSC=7, KCSC=7, n=2 and ρ=1/6.
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Balanced Mixer/
Correlator (see

Figure 1)
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REJECTION OF MULTIPATH COMPONENTS

• IF MULTIPATH COMPONENT ARRIVES > 1 CHIP WAY, IT IS REJECTED
BECAUSE CODE IS RANDOMIZED

 

 

• SINCE TRANSLATES OF THE CODE PATTERN ARE EXAMINED IN
INCREASING ORDER DURING CODE ACQUISITION, MULTIPATH LOCK
OCCURS ONLY IF ACQUISITION FAILS ON DIRECT COMPONENT

 

 

• IN THE LATTER CASE, CHANGE IN MULTIPATH MAY CAUSE LOSS OF
SYNCHRONIZATION, IN WHICH CASE THE DIRECT SIGNAL PATH WILL BE
ACQUIRED WITH HIGH PROBABILITY
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CONCLUSIONS

• IMPROVED SPECTRUM UTILIZATION
• RESISTANCE TO CW INTERFERENCE
• RESISTANCE TO SIMILAR SIGNAL INTERFERENCE
• IMPROVED TIME OCCUPANCY
• IMPROVED PERFORMANCE DUE TO ERASURE PROCESSING

SEVERAL IDEAS AND RESULTS HAVE BEEN PRESENTED:

• ASYNCHRONOUSLY USING A PAIR OF ORTHOGONAL  (AT ALL LAGS) MNCS FOR
SIGNALING

• REGISTERING CANDIDATE PULSES WITH COHERENT CORRELATORS
• ERASURE PROCESSING TO MITIGATE CO-CHANNEL INTERFERENCE
• CHANNEL MODEL AND CHANNEL CAPACITY FOR THIS SCHEME
• A BER UPPER BOUND FOR THE PULSE-POSITION SUB-CHANNEL AS A FUNCTION OF

BANDWIDTH EXPANSION FACTOR
• THE USE OF THE CSC FOR MULTIMEDIA DATA WHEN DECODERS USE ERROR-

CONCEALMENT STRATEGIES
• THE APPLICABILITY OF FHMA CODES TO THE THMA SCHEME GENERATED BY AN OCC
• CODE ACQUISITION AND TRACKING
• PHASE AMBIGUITY RESOLUTION AND CARRIER TRACKING


