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Abstract— When the maximum frequency offset to be acquired is 

a small fraction of the symbol-rate, a DFT-pair based carrier 

acquisition method (a frequency-domain analog of the early-late 

gate synchronizer) provides low-complexity frequency-offset 

acquisition using a modest number of symbols. Several new 

modulation and coding standards (e.g., DVB-S2, allowing 

receivers to operate at lower Eb/N0’s) require that this DFT-based 

acquisition scheme be modified in order to allow acquisition at a 

range of signal-to-noise ratios. As the signal-to-noise ratio is 

unknown, an intuitively appealing method, explored in this 

paper, takes the smaller of the two DFT bins as the bin with more 

noise.   
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I.  INTRODUCTION 

Frequency acquisition may be either pilot-based [1, 2] or 
unaided [3-5]. In this paper we consider unaided (or “blind”) 
frequency acquisition. 

 
For continuous mode MPSK, carrier acquisition described 

in [4, 5] removes modulation (exponentiating the band-pass 
filtered signal by M, implemented as log2M stages of squaring), 
while for burst-mode, an un-modulated preamble field is 
exploited for faster acquisition. M is 16 for 16-QAM, since its 
phases are approximately a subset of 12 of 16 equally-spaced 
phases. This approximation, in addition to amplitude 
modulation, results in a less localized spectral peak after 
exponentiation. 

 
Thereafter, a traditional method (as in [5]) then obtains a 

sampled spectrum (computed by an FFT) and identifies the 
sample (or FFT bin) that consistently peaks to obtain coarse 
frequency acquisition. When the maximum frequency offset is 
a small fraction of the symbol rate (i.e., for a high symbol rate), 
a DFT-pair discriminator allows the frequency offset to be 
estimated as described in [4, 5]. We describe a refinement to 
that method that allows a single discriminator to perform well 
at all signal-to-noise ratios. The improvement described applies 
to both continuous and burst modes. 

 

A Chebyshev window [6] with parameter a, 1.5≤a≤3, 
suppresses out-of-band noise and interference by 30-60dB, 
while incurring processing losses of 3-3.23dB. DFT-based 
acquisition is robust in many noise/ interference scenarios. In 
order to acquire a digital carrier’s frequency offset, a receiver 

applies a Chebyshev window and calculates DFT envelopes, y1 
and y2, at two equidistant bins (this, as stated in pp. 239 of [4] 
is the frequency domain analog of the early-late gate 
synchronizer described pp.226-228 of [4]) from the nominal 
carrier. Averaging periodograms over K 50% overlapped 
segments improves SNR by almost K. The frequency offset is 
obtained as a function of DFT ratio (as described by Figure 6 in 
section III for various modulation schemes). This estimator 
enables an acquisition procedure which decreases the offset 
progressively and rapidly; in contrast, a PLL’s phase estimates 
become random once the offset exceeds its limited tracking 
range. 

 
When the signal-to-noise ratio is poor, the DFT ratio 

approaches unity (particularly for small frequency offsets that 
are greater than the coherent demodulator’s PLL tracking 
range). In such a case, there is no frequency correction that is 
made and acquisition failure results. We describe a method 
(that automatically adapts to the prevailing signal-to-noise 
ratio) to modify the DFT ratio in Section II.  

 

II. IMPROVED ACQUISITION 

A better acquisition procedure (compared to that reported in 
[5]) is to find the minimum of the two DFT bin energies and 

subtract a fraction α of it from both DFT bins before 
computing their ratio. 

 
The qualitative rationale is that the signal-to-noise ratio in 

the smaller DFT bin depends on a) the carrier-to noise ratio 
(C/N) and b) the frequency offset. With moderate to large 
frequency offsets, the smaller DFT bin contains more noise (at 
lower C/N’s), thus providing a good estimate of N, while 
making an incorrect N estimate at small frequency offsets does 
change significantly the computed DFT ratio. 

 
Quantitatively, the smaller bin DFT energy is 

D(fc+foffset)·C+N and the larger bin is  D(fc-foffset)·C+N, where D 
is the Dolph-Chebyshev window energy response, fc is the 
nominal carrier frequency (or center frequency, midway 

between the two DFT bins). Subtracting α (to be selected in 
N/C≤α<1, the upper limit being selected to avoid an 
indeterminate ratio) times the smaller of the DFT energies from 
both and computing the ratio yields: 

[(1-α)·D(fc+foffset)·C+N]/{[D(fc-foffset)·C+N]-
α·[D(fc+foffset)·C+N]}    (1) 



At low SNRs, the raised noise floor (due to exponentiation 
by M) drives the DFT ratio close to unity, causing the DFT 
ratio to lose discrimination of frequency offset, i.e., frequency 
offsets are estimated as near zero offsets causing incorrect 
acquisition. The subtraction shown in (1) reduces the ratio to 
less than unity (i.e., subtracting noise), sufficient so that large 
frequency offsets are acquired by iteratively accumulating 
smaller offsets, until the DFT ratio is truly near unity indicating 
that the offset has been acquired. Hence, this method improves 
acquisition at the expense of increase in acquisition time. 

Though the choice of α is based on C/N, pulse shaping and the 
modulation-type of the signal, it is more-or-less unvarying over 
the operating Es/N0 range.  

 
Frequently, with fixed-point arithmetic on typical DSP 

processors, one likes to work on DFT envelopes (rather than 
energies). The noise subtraction method remains the same 

(with a different scale factor on α as compared to energy-based 
computations) as in a finite-dimensional complex vector space, 
all norms are topologically equivalent [7]. A popular 
approximation [8] for the envelope is also equivalent to the L
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norm: suppose dftl and dfth are the smaller and larger DFT 
envelopes before alteration respectively and corresponding 

primed envelopes after modification, then dftl'=dftl·(1-α2
)
1/2
 

and dfth'=(dfth
2
-α2

·dftl
2
)
1/2
. We use the approximation that the 

square root of the sum of two squared quantities is 
approximately (with up to a maximum error of 6%) the larger 

quantity plus (√2-1) times the smaller quantity. Since (1-

α2
)
1/2≈[1-(√2-1)·α], dftl'=dftl-(√2-1)·α·dftl and dfth'=dfth-(√2-

1)·α·dftl. Thus, the scale factor for envelopes (as compared to 

the energies) is (√2-1)·α/α2
=(√2-1)/α. 

 

Figure 1 shows a family of curves, parameterized by α, of 
the fraction of DFT ratio for each original DFT ratio. As can be 
seen, the DFT ratio does not change significantly for small 
offsets, but rapidly increases before saturating (particularly for 

higher α’s) for medium to large frequency offsets. 
 

 
Figure 1.    Fraction of DFT ratio computed after noise subtraction as a function 

of original DFT ratio 
 

 

We can see that with large offsets α should be large (but 
less than unity, because the smaller bin energy is almost 
entirely noise), while with small offsets, only a fraction of the 
smaller bin energy should be subtracted (since it has both 
signal and noise components). This suggests a fixed non-

negative, decreasing schedule, with unbounded sum, for α 
regardless of the unknown frequency offset [9]. 

 
In order to compare the varying schedule with two fixed 

schedules, Figure 2 shows typical convergence behavior (as a 
function of DFT-block count) at an Eb/N0 where all three 
schedules converge (i.e., for 512ksymb/sec., 8-PSK at 
Eb/N0=9dB) to the actual frequency offset. The three schedules 

are: a) α=0 (i.e., no subtraction), b) α=0.87, (without any 
schedule) and c) α-scheduling of α=0.87 for 30 DFT blocks 
and α=ε (a small positive constant near 0) thereafter. While 

avoiding terminal oscillations of α=0.87 (constant), α-
scheduling has the fastest rise (to within fine frequency 
acquisition range indicated by the dashed line) and overall 

convergence times. As Eb/N0 is reduced, first the α=0 (fixed) 
schedule fails to converge and then the α=0.87 (fixed) schedule 
fails to converge; thus, the varying schedule evaluated here 
gains both in terms of converging at lower Eb/N0’s (this effect 
is quite modest in the scenarios tested) convergence and in 
rapidity of convergence (this effect being of substantial 
significance). Regardless of the actual frequency offset, a 
decreasing schedule is always better than a fixed schedule. 

 

 
Figure 2. 8-PSK α-scheduling’s faster rise and convergence time 

 

 
Figure 3 shows typical convergence behavior (as a function 

of DFT-block count) at an Eb/N0 where all three schedules 
converge (i.e., for 512ksymb/sec., 16-QAM at Eb/N0=15dB). 
The oscillatory convergence seen is due to spectral peak being 
data-dependent and less localized (as the exponentiation does 
not completely remove the modulation). However, we still see 

that a decreasing α-schedule obtains the most rapid 
convergence (as in 8-PSK). 

 



 
Figure 3. 16-QAM α-scheduling’s faster rise and convergence time 

 
A further benefit of a decreasing schedule is in a no-noise 

scenario (such as in loop-back testing of a modem) where, 

ideally, α should equal 0. Using a decreasing schedule allows 
oscillating convergence (as shown in Figure 4, for an 8-PSK 

example, α-scheduling of α=0.87 for 30 DFT blocks and α=ε 
thereafter), provided the initial frequency offset is not greatly 
overestimated.  

 
Figure 4. 8-PSK α-scheduling’s convergence time with no noise 

 

III. FREQUENCY ACQUISITION IN CONTINUOUS-MODE 

 
Figure 5.    Carrier acquisition section of a high symbol-rate demodulator 

Figure 5 shows the method for a 1024k, 512k, 256k and 
128k symbol rate demodulator carrier acquisition including the 
DFT noise subtraction technique described in Section II.  The 
complex base-band modulated signal is band-pass filtered and 
decimated, such that the signal is at 6 samples/ symbol prior to 
exponentiation. In Figure 5, for 1024k, 512k, 256k and 128k 
symbol rates, n (the number of times the first decimation filter 
section is iterated)=1, 1, 2 and 3 respectively and P (the 
decimation factor)=1, 2, 2 and 2 respectively. For BPSK, 
QPSK, 8-PSK and 16-QAM, the exponentiation parameter 
m=2, 4, 8 and 8 respectively. The DFT ratio vs. frequency 
offset functional relationship depends, due to pulse-shaping- 
and ISI- induced spectral envelope fluctuations, upon 
modulation type and window length as shown by Figure 6 
(where fbin is the optimum DFT bins’ position that minimizes 
the probability that frequency offset error, over a desired 
acquisition range and SNR, exceeds the PLL’s frequency 
tracking range, normalized to the DFT window duration’s 
reciprocal). Table I gives the Chebyshev window design 

parameters and [DFTsize/(6×symbol rate)] is the window 
duration.  

 
TABLE I.    Chebyshev acquisition windows 

Modulation 

type 

Chebyshev window side-lobe attenuation (dB) 

Coarse window 

(DFT size = 32) 

Fine window 

(DFT size = 64) 

BPSK 33 40 

QPSK 38 45 

8-PSK 27 40 

16-QAM 40 52 

 

 
Figure 6.    Relationship between frequency offset and DFT ratio, solid and 
dashed curves correspond to coarse and fine window lengths respectively 

 

Table II summarizes performance obtained with or without 

α-scheduling with α selected, and performance measured, on a 
DSP-based demodulator (Figure 7). DFT block-averaging of 
512, 512, 1024 and 8192 are selected for BPSK, QPSK, 8-PSK 
and 16-QAM respectively. As already suggested in section II, 

α-scheduling reduces acquisition time (rather than improve 
tolerance to a higher level of noise). 
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Figure 7.    DSP-based low power demodulator 

 
 

TABLE II.    Performance summary of carrier acquisition 

Modulation 

type 

Symbol 
rate 

(symbols/ 

sec) 

Acquisition 

range  
(Hz) 

Threshold 

Eb/N0  
(dB) 

Acquisition 

blocks 

IESS-308 
BPSK 

rate ½ Viterbi 

RS(126,112) 

1024k ± 80k 4.0 

60 
512k ± 40k 4.0 

256k ± 20k 4.0 

128k ± 10k 4.0 

IESS-308 

QPSK 
rate ½ Viterbi 

RS(126,112) 

1024k ± 40k 4.0 

700 
512k ± 20k 4.0 

256k ± 10k 4.0 

128k ± 5k 4.0 

IESS-310 

8-PSK 

TCM-2/3 
RS(219,201) 

1024k ± 15k 8.0 350 (α=0.87), 
250 (α=0.87 for 
30 blocks and ε 

thereafter) 

512k ± 7.5k 8.0 

256k ± 3.75k 8.0 

128k ± 1.87k 8.0 

DVBS 
16-QAM 

TCM-3/4 

RS(204,188) 

1024k ± 3k 13.5 100 (α=0.8), 
75 (α=0.8 for 12 
blocks and ε 
thereafter) 

512k ± 1.5k 14 

256k ± 750 14.5 

128k ± 375 14.5 

 

IV. CONCLUSION 

We have shown that a low-complexity two-bin DFT 
method (as opposed to computing many DFT’s over a range) 
can be modified, in some cases, to provide acquisition at the 
thresholds that match (subsequent) coherent demodulator 
performance. This modification consists of subtracting a 
positive fraction of the minimum of the DFT-pair energy from 
both energies. While this fraction can be constant or varying, 
using a decreasing schedule for this fraction yields rapid 
convergence to the true frequency offset. The additional benefit 

of α-scheduling is that acquisition is unimpaired when there is 
very little noise (such as in loopback testing). 
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